Djikstra's Algorithm

(as in 'dike-stra’)

What's the shortest path between nodes in
a graph?
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‘I had to make up my mind, either to stop
programming and become a real,
respectable theoretical physicist, or to carry
my study of physics to a formal completion
only, with a minimum of effort, and to
become....., yes what? A programmer? But
was that a respectable profession? For after
all, what was programming?”

- Edsger Djikstra (reminiscing about ~1951)



Given a “source node” (S) and a
“target node” (T) in a graph of
nodes, how long is the shortest
path connecting them?
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Given a “source node” (S) and a Is this the optimal path?
“target node” (T) in a graph of
nodes, how long is the shortest
path connecting them?
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The solution: Dijkstra's algorithm



Step 1: Assume each node is
“infinitely far” from the source node
(source node is distance-0 from itself)
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Step 2: Starting on the source node,
check the distance from the neighbors of
the current node to the source node
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Step 3: Among unvisited (black) nodes,
pick one with the lowest “tentative
distance” as the next node
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Step 4: Among unvisited (black) Tentative Distance = (Tentative

. : Distance of Current Node) +
neighbors of current node, assign more  pisiance from Current Nod)e ‘0

“tentative distances” Neighbor Node)
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Step 5: Among unvisited (black) nodes,
pick another one with minimum “tentative
distance” as new current node...
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Step 6: Check the unvisited (black)
neighbor nodes, and assign tentative
distances...

Very Important: if there is a conflict between a new tentative distance, and
an old tentative distance, the lower one wins! This is key!



Step 7: Among unvisited (black) nodes,
pick another one with minimum “tentative
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Step 8: Assign new tentative distances to
unvisited (black) neighbors, resolving any
conflicts...

9 0 0 0 00 00 0
We technically have a conflict here! But anything is less than infinity,
so it's obvious what to do.

This is why we initialize everything to infinity at the beginning.



Step 9: Among unvisited (black) nodes,
pick another one with minimum “tentative
distance” as new current node...
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Step 10: Assign new tentative distances
to unvisited neighbors, and resolve
conflicts...
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Step Eventually: The “visited cluster” Hurray! We finally
reaches the target node! did it!
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Because the “cluster” expands from around the source node, the
distance assigned to the target node by the time we visit is
guaranteed to be minimal!



Step Eventually: The “visited cluster” This all seems a bit trivial on a

2D evenly spaced grid, but it
reaches the target node! generalizes easily to other

situations
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For Example: what if nodes were unevenly spaced? Each step would work the
same! Keeping assigning tentative distances, and keep moving to the target.



Dijkstra Algorithm Iteration 1

Here's my code running on a 8-by-
8 grid. See how the visited points
spread-out from the source node!

Red — Source
Node

Green — Target
Node

Black —
Visited Node

For a graph with V
nodes, runs as
~O(IV[?)



Dijkstra Algorithm Iteration 1

But what if there is a “wall” of
Inaccessible nodes? The algorithm
works the same, and still gives the

right answer!

Red — Source
Node

Green — Target
Node

Blue —
Inaccessible
Node

Black — Visited
Node

For a graph with V
nodes, runs as
~O(|V[?)



Perhaps | can show you all my hideously
written, and unoptimized python code?....



Thank you!



