Djikstra's Algorithm

(as in 'dike-stra’)

What's the shortest path between nodes in
a graph?

Kiel Williams, University of lllinois Dept. of Physics
02/08/2018 Algorithm Interest Group Meeting

‘I had to make up my mind, either to stop
programming and become a real,
respectable theoretical physicist, or to carry
my study of physics to a formal completion
only, with a minimum of effort, and to
become....., yes what? A programmer? But
was that a respectable profession? For after
all, what was programming?”

- Edsger Djikstra (reminiscing about ~1951)

Given a “source node” (S) and a
“target node” (T) in a graph of
nodes, how long is the shortest
path connecting them?

S@
®

_|

Given a “source node” (S) and a Is this the optimal path?
“target node” (T) in a graph of
nodes, how long is the shortest
path connecting them?

Given a “source node” (S) and a Is this the optimal path?
“target node” (T) in a graph of
nodes, how long is the shortest How about this?
path connecting them?

T

Given a “source node” (S) and a Is this the optimal path?
“target node” (T) in a graph of
nodes, how long is the shortest How about this?
path connecting them?

® T
® O
®

The solution: Dijkstra's algorithm

Step 1: Assume each node is
“infinitely far” from the source node
(source node is distance-0 from itself)

8
8
8

n
‘8‘0‘8‘8 ‘8
.8‘8 ‘8.8‘8.8

.8‘8 ‘8.8‘8
o0 o

©0 0.0.0

8

8 8’8‘8’
.8‘8 ‘8‘8‘8.8
.8‘8 ‘8‘8‘8.8
0 0000

8

8

8 8
—

8

8

8

Step 2: Starting on the source node,
check the distance from the neighbors of
the current node to the source node

(>0) (>0 ©0

8

8 8’8‘8'
.8‘8 ‘8‘8‘8.8
.8‘8 ‘8‘8‘8.8
0 0000

8

.8‘8 ‘8.8‘8.8

8

8 8
—

8

8

8

Step 3: Among unvisited (black) nodes,
pick one with the lowest “tentative
distance” as the next node

-9, 0,0,
®.0.00
.8‘8 ‘8.8‘8.8
9.0.0.0.0.0.
8

8’8‘8'
.8‘8 ‘8‘8‘8.8
.8‘8 ‘8‘8‘8.8
0 0000

=

8

8

8

8 8
—

8

8

8

Step 4: Among unvisited (black) Tentative Distance = (Tentative

. : Distance of Current Node) +
neighbors of current node, assign more pisiance from Current Nod)e ‘0

“tentative distances” Neighbor Node)

o0

Step 5: Among unvisited (black) nodes,
pick another one with minimum “tentative
distance” as new current node...

8
8
8
8

8

.8‘8 ‘8.8‘8.8

8’8‘8’

H.S ‘8

N'8‘8
.8‘8 ‘8‘8‘8.8
.8‘8 ‘8‘8‘8.8
O 0 06000

8

8

8

8 8
—

8

8

8

Step 6: Check the unvisited (black)
neighbor nodes, and assign tentative
distances...

Very Important: if there is a conflict between a new tentative distance, and
an old tentative distance, the lower one wins! This is key!

Step 7: Among unvisited (black) nodes,
pick another one with minimum “tentative
distance” as new current node...

Very Important: if there is a conflict between a new tentative distance, and
an old tentative distance, the lower one wins! This is key!

Step 8: Assign new tentative distances to
unvisited (black) neighbors, resolving any
conflicts...

9 0 0 0 00 00 0
We technically have a conflict here! But anything is less than infinity,
so it's obvious what to do.

This is why we initialize everything to infinity at the beginning.

Step 9: Among unvisited (black) nodes,
pick another one with minimum “tentative
distance” as new current node...

8
8
8
8

8

.8‘8 ‘8.8‘8.8

8’8‘8’

N'8‘8
.8‘8 ‘8‘8‘8.8
.8‘8 ‘8‘8‘8.8
O ® 6 0 00

H‘N ‘8

8

8

8

8 8
—

8

8

8

Step 10: Assign new tentative distances
to unvisited neighbors, and resolve
conflicts...

8
8

0.0,
9,0,0
00.8‘8.8

8

_l

8

N

-9

8’8‘8’
.8‘8 ‘8‘8‘8.8
0 0000
0 0000

8

8
8

8
8

9:0.0:.0:0.0;

)
WTN

Step Eventually: The “visited cluster” Hurray! We finally
reaches the target node! did it!

cOyY o©
®\®
c0O ¥ o0
® o1
c0O o0
® O
o0 o0
® O
c0O o0
® O
o0 o0
® 0 060 O

Because the “cluster” expands from around the source node, the
distance assigned to the target node by the time we visit is
guaranteed to be minimal!

Step Eventually: The “visited cluster” This all seems a bit trivial on a

2D evenly spaced grid, but it
reaches the target node! generalizes easily to other

situations
00 00
® O
00 00
e o
00 ©0
® O
00 00
® O
00 00
O 6 6 O
00 00

For Example: what if nodes were unevenly spaced? Each step would work the
same! Keeping assigning tentative distances, and keep moving to the target.

Dijkstra Algorithm Iteration 1

Here's my code running on a 8-by-
8 grid. See how the visited points
spread-out from the source node!

Red — Source
Node

Green — Target
Node

Black —
Visited Node

For a graph with V
nodes, runs as
~O(IV[?)

Dijkstra Algorithm Iteration 1

But what if there is a “wall” of
Inaccessible nodes? The algorithm
works the same, and still gives the

right answer!

Red — Source
Node

Green — Target
Node

Blue —
Inaccessible
Node

Black — Visited
Node

For a graph with V
nodes, runs as
~O(|V[?)

Perhaps | can show you all my hideously
written, and unoptimized python code?....

Thank you!

